Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- overfitting
- AlexNet
- classification
- C++
- 딥러닝
- BFS
- TD
- dfs
- 백준
- image processing
- SIFT
- dropout
- clustering
- edge detection
- opencv
- machine learning
- canny edge detection
- object detection
- exists
- dynamic programming
- sklearn
- DP
- 머신러닝
- MySQL
- Mask Processing
- 그래프 이론
- 강화학습
- Python
- MinHeap
- Reinforcement Learning
Archives
- Today
- Total
목록연쇄행렬곱셈 (1)
JINWOOJUNG
[ DP-11049 ] 행렬 곱셈 순서(C++)
접근법 연쇄적인 행렬의 곱셈 순서를 결정하는 것은 DP 문제 중 하나로, 효율적은 행렬 곱셈 순서를 결정하는 문제이다. 문제에서 언급 되었듯이 행렬의 곱셈 순서에 따라서 요구되는 계산량이 달라지기 때문에, 곱셈 연산을 최소로 하는 순서를 결정해야 한다. 가장 기본적인 행렬 곱셈의 규칙을 생각 해 보자. $A$ 행렬은 $ i by j $, $B$ 행렬은 $k by l$이라 하면, 행렬 $A,B$의 곱셈 연산이 성립하기 위해서는 $j == k$여야 하며, 계산된 행렬을 $C$라 하면, $C$의 크기는 $ i by l $이 된다. 이러한 규칙을 고려하여, 연쇄 행렬곱셈을 DP를 이용하여 해결하기 위해서 재귀 관계식을 구축하면 다음과 같다. $$d_k = 행렬 A_k의 열의 수 /to A_k의 행의 수는 ..
백준
2024. 5. 19. 22:40