일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- image processing
- 그래프 이론
- dropout
- machine learning
- canny edge detection
- object detection
- SIFT
- MinHeap
- overfitting
- Mask Processing
- DP
- MySQL
- exists
- dynamic programming
- Python
- edge detection
- 딥러닝
- clustering
- 강화학습
- C++
- Reinforcement Learning
- 머신러닝
- BFS
- eecs 498
- AlexNet
- dfs
- opencv
- deep learning
- sklearn
- 백준
- Today
- Total
목록AlexNet (6)
JINWOOJUNG
https://jinwoo-jung.tistory.com/133 Very Deep Convolutional Networks for Large-Scale Image Recognition...(1)Research Paperhttps://arxiv.org/abs/1409.1556https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlhttps://www.researchgate.net/publication/220812758_Flexible_High_Performance_Convolutional_Neural_Networks_for_Imajinwoo-jung.com4. Classification E..
Research Paperhttps://arxiv.org/abs/1409.1556https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlhttps://www.researchgate.net/publication/220812758_Flexible_High_Performance_Convolutional_Neural_Networks_for_Image_Classification0. Abstract본 논문에서는 Convolutional Network의 Depth에 따른 성능을 분석한다. 3x3의 작은 Convolutional Filter를 사용하여 Network의 Depth를 16~19까지 증가시킴..
IntroductionObject Detection Task는 Machine Learning이 필수적으로 요구된다. 모델의 성능 향상을 위해선 더 큰 데이터 셋(Large Dataset), 더 강인한 모델의 학습(More Powerful Model), 과적합(Preventing Overfitting)을 막기 위한 기술의 사용이 요구된다.Large Dataset이전까지는 Label을 유지한 Augmentation을 사용하면, 데이터 셋의 크기가 작아도 충분히 좋은 성능을 보였다. 하지만, 현실에서의 객체 인식 문제의 차원은 크고 다양한다. 즉, Occlusion, 조명, 변형 등 현실 세계에서의 다양성과 복잡성을 작은 데이터 셋은 충분히 반영하지 않고 있다. 또한, 작은 데이터 셋은 모델의 Overfitt..
본 컴퓨터 비전 개념과 기법들에 대한 공부를 진행하면서 배운 내용들을 중심으로 정리한 포스팅입니다. 책은 Computer Vision: Algorithms and Applications를 기반으로 공부하였습니다.또한, 인하대학교 박인규 교수님의 컴퓨터 비전 과목을 기반으로 제작된 포스팅입니다.https://jinwoo-jung.tistory.com/114 [ 컴퓨터 비전 ] Ch5. Deep Learning...4본 컴퓨터 비전 개념과 기법들에 대한 공부를 진행하면서 배운 내용들을 중심으로 정리한 포스팅입니다. 책은 Computer Vision: Algorithms and Applications를 기반으로 공부하였습니다.또한, 인하대학교jinwoo-jung.comRecognition(인식)Recognit..
본 컴퓨터 비전 개념과 기법들에 대한 공부를 진행하면서 배운 내용들을 중심으로 정리한 포스팅입니다. 책은 Computer Vision: Algorithms and Applications를 기반으로 공부하였습니다.또한, 인하대학교 박인규 교수님의 컴퓨터 비전 과목을 기반으로 제작된 포스팅입니다.https://jinwoo-jung.tistory.com/112 [ 컴퓨터 비전 ] Ch5. Deep Learning...2본 컴퓨터 비전 개념과 기법들에 대한 공부를 진행하면서 배운 내용들을 중심으로 정리한 포스팅입니다. 책은 Computer Vision: Algorithms and Applications를 기반으로 공부하였습니다.또한, 인하대학교jinwoo-jung.comDifference of MLP and C..
Abstract ImageNet LSVRC-2010에서 120만 개의 고해상도 이미지가 1000가지 클래스로 이루어진 Dataset을 Calssification 하기 위해 Large, Deep Convolution Neural Network(DCNN) 학습시켜, test dataset에 대한 37.5%의 Top-1 Error와 17.0%의 Top-5 Error를 달성하여 이전의 SOTA(State-Of-The-Art)보다 우수한 성능을 보였다. 해당 모델을 발전시켜 ILSVRC-2012에서 15.3의 Top-5 Error로 우승하였다. Introduction 객체 인식에 대한 접근 방식은 기계 학습 방법을 중요하게 활용한다. 최근까지 레이블이 지정된 이미지 데이터 셋은 수만장의 규모로 상대적으로 작았고,..