Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- opencv
- MySQL
- dropout
- eecs 498
- 강화학습
- 백준
- 그래프 이론
- edge detection
- 딥러닝
- canny edge detection
- DP
- MinHeap
- r-cnn
- dynamic programming
- exists
- 머신러닝
- C++
- machine learning
- BFS
- Reinforcement Learning
- dfs
- object detection
- Mask Processing
- CNN
- Python
- AlexNet
- deep learning
- sklearn
- image processing
- overfitting
Archives
- Today
- Total
목록17626 (1)
JINWOOJUNG
[ DP - 17626 ] Four Squares
문제 접근법 DP 문제이다 직접 해보자. 1 -> 1 -> 1 2 -> 1 + 1 -> 2 3 -> 1 + 1 + 1 -> 3 4 -> $2^2$ -> 1 5 -> $2^2 + 1$ -> 2 = 1 + DP[5- $2^2$ ] 6 -> $2^2 + 1 + 1$ -> 3 = 1 + DP[6-$2^2$] 약간 규칙이 보일 것이다. 자연수 N의 제곱으로 표현되는 1,4,9 등은 1개가 최소이다. N의 제곱으로 표현되지 않으면, 나와 가장 가까운 자연수 N의 제곱을 뺀 DP[] 값에 1을 더해주면 된다. 하지만 예외사항이 발생한다. 23의 경우 위 논리데로 수행하면 DP[23] = DP[7] + 1, DP[7] = DP[3] + 1 = 4이므로 DP[23]은 5이 된다. 이는 넷 혹은 그 이하의 자연수의 제곱의..
백준
2024. 4. 2. 00:07