Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 머신러닝
- 딥러닝
- AlexNet
- DP
- 강화학습
- edge detection
- 백준
- machine learning
- exists
- Reinforcement Learning
- dynamic programming
- sklearn
- dfs
- MySQL
- image processing
- opencv
- SIFT
- Python
- dropout
- deep learning
- canny edge detection
- TD
- MinHeap
- object detection
- overfitting
- 그래프 이론
- C++
- Mask Processing
- BFS
- clustering
Archives
- Today
- Total
목록gradient direction error (1)
JINWOOJUNG
Dropout Reduces Underfitting...(1)
Research Paperhttps://arxiv.org/pdf/2303.01500https://jmlr.org/papers/v15/srivastava14a.htmlhttps://arxiv.org/abs/1512.033850. AbstractDropout은 Neural Network에서 Overfitting을 방지하는 정규화로써 사용되고 있다. 본 논문에서는 Dropout을 초기학습에서 사용함으로써 Underfitting을 완화하는데 사용할 수 있음을 입증한다.미니배치 간의 기울기 방향 분산을 감소전체 데이터셋의 기울기와 미니 배치의 기울기를 정렬초기 학습에서의 Dropout을 통해 SGD의 확률적 특성을 보완하고, 개별 배치가 모델 학습에 미치는 영향을 제한할 수 있다. 이를 기반으로 Dropout을 ..
딥러닝/논문
2024. 12. 30. 15:35