일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- Reinforcement Learning
- real-time object detection
- 그래프 이론
- eecs 498
- r-cnn
- Python
- YoLO
- One-Stage Detector
- BFS
- 강화학습
- 머신러닝
- two-stage detector
- Mask Processing
- AlexNet
- 딥러닝
- MinHeap
- dynamic programming
- dfs
- 백준
- deep learning
- opencv
- machine learning
- MySQL
- C++
- object detection
- ubuntu
- image processing
- CNN
- LSTM
- DP
- Today
- Total
목록분류 전체보기 (151)
JINWOOJUNG

Research PaperRich feature hierarchies for accurate object detection and semantic segmentation(R-CNN)Selective Search for Object Recognition Diagnosing error in object detectors0. AbstractPASCAL VOC dataset에 대한 Object detection 성능은 지난 몇년간 정체되어 있었으며, 기존 최고 성능의 모델은 여러 저수준 특징(SIFT, HOG 등)을 결합하고 고수준 정보(Context)를 활용한 복잡한 앙상블 시스템(Deformable Part Models)이었다. 본 논문에서는 다음 2가지 Key를 결합한 R-CNN(Regions with ..

본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.https://jinwoo-jung.tistory.com/135 [EECS 498] Assignment 3. Fully Connected Networks...(2)JINWOOJUNG [EECS 498] Assignment 3. Fully Connected Networks...(2) 본문 딥러닝/Michigan EECS 498 [EECS 498] Assignment 3. Fully Connected Networks...(2) Jinu_01 2025. 1. 7. 15:00jinwoo-jung.comDeep Fully Connected Networks에서 나아가 Convolutional Network..
보호되어 있는 글입니다.

https://jinwoo-jung.tistory.com/133 Very Deep Convolutional Networks for Large-Scale Image Recognition...(1)Research Paperhttps://arxiv.org/abs/1409.1556https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlhttps://www.researchgate.net/publication/220812758_Flexible_High_Performance_Convolutional_Neural_Networks_for_Imajinwoo-jung.com4. Classification E..

Research Paperhttps://arxiv.org/abs/1409.1556https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.htmlhttps://www.researchgate.net/publication/220812758_Flexible_High_Performance_Convolutional_Neural_Networks_for_Image_Classification0. Abstract본 논문에서는 Convolutional Network의 Depth에 따른 성능을 분석한다. 3x3의 작은 Convolutional Filter를 사용하여 Network의 Depth를 16~19까지 증가시킴..

본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.https://jinwoo-jung.tistory.com/127 [EECS 498] Assignment 2. Two Layer Neural Network...(2)본 포스팅은 Michigan Univ.의 EECS 498 강의를 수강하면서 공부한 내용을 정리하는 포스팅입니다.https://jinwoo-jung.tistory.com/126 [EECS 498] Assignment 2. Two Layer Neural Network...(1)본 포스팅은 Michigan Univ.의 EECS 4jinwoo-jung.com지난 과제에서 구현한 Two Layer Network는 Loss, Gradient, F..

Reducing OverfittingAlexNet의 경우 6,000만 개의 Parameter를 가지기에, ImageNet의 Subset(Large Datset)으로도 Overfitting이 발생할 수 있다. 본 논문에서는 Overfitting을 막기위한 2가지 방법을 사용한다. Data Augmentation Image Dataset에서 Overfitting를 줄이기 위해 Label을 보존한 변형(Data Augmentation)을 많이 사용한다. 본 논문에서는 2가지 주요한 Data Augmentation을 다루며, 매우 작은 연산으로 진행되기에 변형된 Image를 추가적으로 저장할 필요가 없다. 추후 저자가 공지한 것 처럼, Input Image는 잘못된 논문과 달리 227x227x3으로 표현하겠다...

IntroductionObject Detection Task는 Machine Learning이 필수적으로 요구된다. 모델의 성능 향상을 위해선 더 큰 데이터 셋(Large Dataset), 더 강인한 모델의 학습(More Powerful Model), 과적합(Preventing Overfitting)을 막기 위한 기술의 사용이 요구된다.Large Dataset이전까지는 Label을 유지한 Augmentation을 사용하면, 데이터 셋의 크기가 작아도 충분히 좋은 성능을 보였다. 하지만, 현실에서의 객체 인식 문제의 차원은 크고 다양한다. 즉, Occlusion, 조명, 변형 등 현실 세계에서의 다양성과 복잡성을 작은 데이터 셋은 충분히 반영하지 않고 있다. 또한, 작은 데이터 셋은 모델의 Overfitt..