Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- machine learning
- BFS
- C++
- two-stage detector
- AlexNet
- 백준
- 그래프 이론
- Python
- MySQL
- image processing
- CNN
- dfs
- 강화학습
- opencv
- 딥러닝
- YoLO
- DP
- deep learning
- NLP
- real-time object detection
- 머신러닝
- LSTM
- MinHeap
- ubuntu
- dynamic programming
- Reinforcement Learning
- r-cnn
- Mask Processing
- One-Stage Detector
- eecs 498
Archives
- Today
- Total
목록선형 회귀 (1)
JINWOOJUNG

본 게시글은 인하대학교 유상조 교수님의 Machine Learning Tutorial Seminar 수강 후정리를 위한 포스팅입니다. 모든 포스팅의 저작관은 유상조 교수님에게 있음을 사전 공지합니다. Classification(분류) : 구별되는 클래스를 예측하는 작업 Regression(회귀) : 실수값/연속적인 값(continuous qunatity)을 예측하는 작업 Linear Regression Linear Regression은 하나 혹은 다수의 Input(explanatory/independent variables)와 Output(a scalar response/dependent variable)의 상관관계를 모델링하는 것이다. 이때 Input Data는 다음과 같이 정의된다. $$x^i = [..
Machine Learning
2024. 1. 2. 23:53